

Treatment planning for the lost permanent incisor(s) in adolescents

Asbjørn Jokstad, DDS, PhD Professor and Head, Prosthodontics Faculty of Dentistry, University of Toronto

Dental injuries due to trauma in sports - Finland 1987-91 n=54186

Kujala UM et al. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate: analysis of national registry data . BMJ 1995;311:1465-1468

HUSTLY OF TOTOLS

Reasons for loss of incisors

<u>Trauma</u>

- 1. Fracture
 - Jaw
 - Crown-root
 - Root cervical / middle / apical
- 2. Exarticulation ("avulsed tooth")
- 3. Post trauma complications
 - Inflammatory root resorption
 - Ankylosis
- 4. Ectopic teeth

1. Fractures

Accident, age 10 Multiple corpus & condyle fractures 11 & 12 lost immediately 14 & 21 later

Jaw fracture

Age 10 Corpus & condyle 11 & 12 14 & 21

Autotransplant Orthodontics Composites

Alveolar Bone

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics. Stenvik & Birkeland, 2007.

Crown–root fracture

2mm below bone level palatinally

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics. Stenvik & Birkeland, 2007.

Pal.fracture line

Crown–root fracture

Surgical repositioning (intraalveolar transplant) 180 degrees rotated

Fixate min. 2 weeks before crown therapy

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics.

Root fracture

Middle 1/3 third.

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics. Stenvik & Birkeland, 2007.

A

Root fracture

Middle 1/3 third.

Schwartz-Arad et al., 2004

2. Exarticulation

Exarticulation

> 0.8-1.7% of all tooth damages are avulsions Slightly higher % loss due to later root resorption and ankylosis (Scandinavia, 1995) Replanted teeth: 22% lost after 2.5 years (7% cervical resorption, 3% epithelial downgrowth, erupting canine, preorthodontic consideration, root resorption, 2% endodontic failure, new trauma (Ebeleseder et al., 1998)

2. Examiculation 3. Post-trauma complications

Progressive resorption

Prevalence following tooth trauma

Concussion 0% Subluxation 0% Lateral luxation 4% Extrusion 6% Exarticulation and replantation 40% Intrusion 64%

(Andreasen et al. .94)

FREQUENT OBSERVATIONS! EARLY INTERVENTION!

Surface Resorption

Replacement Resorption → ankylosis

Inflammatory Resorption -granulation tissue

2. Exarticulation 3. Post-trauma complications 4. Ectopic teeth

Ectopic resorption – secondary to trauma to deciduous teeth

E

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics.

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics.

Management

What was a common element in most of the preceding case presentations?

What was a common element in most of the preceding case presentations?

Maintain the alveolar bone!

Diagnostic classification system of traumatic dental injuries (Ebeleseder , 1994)

	Hard dental tissues	Endodont	Periodontium	Alveolar bone	Gingiva
~	ПА	E +	F +	\mathbf{A}^+	G
5	Intact crown	Intact endodont	Intact	Intact alveolar	Intact gingiva
			periodontium	bone	
4	Enamel infraction,	Exposure of	Concussion	Contusion of the	Contusion
	fracture of the root	dentine, small pulp	(inclusive minimal	marginal bone	
	apex	exposure,	increase of		
		questionable	mobility)		
		vitality			
3	Enamel-dentine	Large pulp	Subluxation,	Fracture of the	Rupture of the
	fracture,	exposure, internal	extrusion, lateral	alveolar socket	papilla
	intra-alveolar root	contusion (root	luxation, luxation,		
	fracture	fracture), apical	and fracture of the		
		contusion or	alveolar process		
		rupture, successful	-		
		endodontic			
		treatment			
2	Crown-root	Infection of the	Intrusion,	Fracture of the	Vertical laceration
	fracture, directly	pulp	replantation with	alveolar process	
	restorable		vital periodontium		
1	Crown-root	Endodontic	Luxation and	Fracture and	Infected laceration
	fracture, only	complications (e.g.,	periodontal	infection	
	indirectly	internal root	infection		
	restorable	resorption,			
		inflammatory			
		resorption)			
0	Vertical fracture,	Endoperiolesion	Replantation with	Loss of the	Loss of gingiva
	lost tooth		necrotic	alveolar socket	
			periodontium		

Patient mediated needs

- 1. Esthetic requirements
- 2. Psychological well-being
- 3. Speech
- 4. Other
 - Space maintenance
 - Prevent muscular parafunction (tongue, swallow)
 - Chewing ability

Choice of appropriate intervention complicated by:

- * Few long term studies
- New technical solutions have been introduced
- * Method reported: indications, procedures, execution?
- Higher demands of aesthetics than before

Therapy alternatives for young patients with irreparable incisor(s)

Decision-tree

It is necessary to make an individual treatment plan for each patient

Rule #2

General Rules do not apply

Rule #3

The management at the early phase will determine the long term outcome

Crown–root fracture

- Removal of coronal fragment + endodontics + orthodontic extrusion \rightarrow temporary crown
- Extraction and surgical repositioning 180° endodontics → temporary crown
- 3. <u>Avoid extraction if possible</u>

Root fracture

- 1. Observe (apical:middle:cervical third?)
- 2. If communication, or signs of inflammation, remove coronal fragment + endodontics + orthodontic extrusion→ temporary crown
- 3. Avoid extraction if possible

Replace the exarticulated tooth

Advantage > Buy time! > Retain bone

Disadvantage

Frequent controls and follow-up examinations

Replace the exarticulated tooth

Advantage > Buy time! > Retain bone

Disadvantage

Frequent controls and follow-up examinations

EXCEPTION: IF PATIENT < 12 YEARS OLD: CONSIDER AUTOTRANSPLANTATION

Auto-transplantation

"The transplantation of embedded, impacted or erupted teeth from one site to another in the same individual into extraction sites or surgically prepared sockets"

Mitsuhiro Tsukiboshi, DDS

ens O. Andreasen, DDS, Odent Dr • Yasuhiro Asai, DDS eif K. Bakland, DDS • Thomas G. Wilson, Jr, DDS

Autotransplantation and prognostic variables

Intrinsic factors

- Root development of donor tooth
- Size of apical foramen
- Timing of ortodonthic intervention
- Surgical technique

Clinical experience

- Trauma to the periodontal ligament and root-resorption (Andreassen et al 90)
- Eruption and growth of the alveolar process (Paulsen et al. 98)

Autotransplantation of (1^{st.}) premolars with incomplete root formation to anterior maxilla

- * > 90 % success
- * New periodontal membrane
- * Continuous root formation
- * Pulp obliteration
- * Keep alveolar process
- * Keep functional occlusion

Replace the exarticulated tooth

<u>Advantage</u>

> Buy time!
> Retain bone
> Symmetry maintained

Disadvantage Risk of: >Infection? Pulp necrosis Ankylosis Infraposition Ridge disharmony Soft tissue disharmony Inflammatory resorption Discoloration

The exarticulated tooth – replanting the tooth and potential risks?

http://www.blackwell-syne

Y100

The exarticulated tooth

Dental Traumatology 2006; doi: 10.1111/j.1600-9657.2005.00448.x All rights reserved Copyright © Blackwell Munksgaard 2006 DENTAL TRAUMATOLOGY

Knowledge of oral health professionals of treatment of avulsed teeth

Cohenca N, Forrest JL, Rotstein I. Knowledge of oral health professionals of treatment of avulsed teeth. © Blackwell Munksgaard, 2006.

Abstract – The management and immediate treatment of an avulsed permanent tooth will determine the long-term survival of the tooth. The aim of this study was to evaluate the knowledge of oral health professionals on the new guidelines for emergency treatment of avulsed teeth. A 12-item questionnaire was distributed among general dentists, specialists, dental hygienists and dental assistants attending Continuing Education courses at the School of Dentistry, University of Southern California, between 2003 and 2004. This study reports only on the general practitioners who comprised 83% of the participants. The results revealed an uneven pattern of knowledge among them regarding the emergency management of an avulsed tooth. Statistically significant associations were related to the participants' previous

dental trauma need to impro guidelines for

8.27 × 10.87 in

Attachments

-

Done

AAE and IADT *advise* not to replant an exarticulated permanent tooth in every case:
•extensive caries
•severe root damage
•open apices that remained in dry conditions >1 h.
Many dentists replant a permanent tooth in every case

Nestor Cohenca^{1,2}, Jane L. Forrest³, Ilan Rotstein¹

¹ Division of Surgical, Therapeutic & Bioengineering Sciences, School of Dentistry, University of Southern California, Los Angeles, CA; "Department of Endodomics, School of Dentistry, University of Washington, Seattle, WA; ³ Division of Health Promotion, Disease Pavention and Epidemiology, School of Dentistry, University of Southern California, Los Angeles, CA, USA

Key words: avulsion; knowledge; health professionals

Dr Nestor Cohenca, Department of Endodontics, School of Dertistry, University of Washington, POB 357448, Seattle, WA 98195-7448, USA Tel.; +1 (206) 543 5044

Is Ankylosis the biggest concern?

Ankylosis

<u>Treatment ASAP</u> Alternative A, Decoronation

Ankylosis

<u>Treatment ASAP</u> Alternative A, Decoronation Alternative B, Surgical block osteotomy

SITY OF TOROT Ankylosis- Alternative B. Surgical block osteotomy Д -C

Faculty of Dentistry, University of Oslo, Depts. of Pedodontics, Orthodontics & Prosthodontics.

Ankylosis

<u>Treatment ASAP</u> Alternative A, Decoronation Alternative B, Surgical block osteotomy (Alternative C, Intentional extraction & repositioning)

Ankylosis

<u>Treatment ASAP</u> Alternative A, Decoronation Alternative B, Surgical block osteotomy (Alternative C, Intentional extraction & repositioning) (Alternative D, Distraction Osteogenesis (adults)))

Ankylosis – decoronation on a young patient

•11-year + 3 y. •Decoronation + 3 y. shows vertical bone coronal Vertical dimension of the alveolar process preserved Root proportionally moves apically. Horizontal bone defect and partial space closure remains Bone augmentation need

Schwarz-Arad, 2004

Ankylosis – decoronation on a older patient

Filippi et al., 2001

Biggest concern is lost tissues How to restore in the anterior maxilla

Alternatives

FIRST: Consider consequences of interventions in the mixed dentition with regard to jaw development and establishment of the permanent dentition

Growth in time

Hand-wrist radiograph indicators can be used to place a patient in the general area of the growth curve.

Koch G, Bergendal T, Kvint S, Johansson UB, 1996

Publisher: Gothia Isbn: 9-1720-5044-6 THE INSTITUTE FOR POSTGRADUATE DENTAL EDUCATION JÖNKÖPING, SWEDEN

Consensus Conference on Oral Implants in Young Patients

Editors: Göran Koch, Tom Bergendal, Sven Kvint, Ulla-Britt Johansson

Maxillary growth- horisontal plane

Transversal: mainly via the midpalatal suture. 3x posterior vs anterior 16:26 width less due to adaptive changes within the dental arch. Length: sutural growth and bone apposition at the tuberosities frontal part rel. stable

Maxillary growth-sagital plane

Vertical development from age 4 to adulthood: Sutural and appositional growth of the dentoalveolar complex combined with tooth eruption.

Sutural growth (Su), average 11.2 mm (varying from 9.5 to 13 mm) Resorptive lowering (Re) of the nasal floor, average 4.6 mm associated with appositional growth at the palatal side Appositional increase in alveolar height (A), average 14.6 mm (varying from 9.5 to 21.0 mm) Bone apposition at the orbit floor (O)

Biörk& Scheller. 1977

Maxillary growth-sagital plane

An early placed implant (e.g. at the age of 5), can be found in the floor of the nose after puberty, while the permanent teeth have further grown down 15 mm.

Mandible growth- horisontal plane

Lateral direction: Anterior: little change Premolar-molar region: moves laterally through bone remodeling (vestibular bone apposition, lingual resorption). Anteroposterior direction: mainly growth through condylar growth increase in length of the corpus through resorption at the ventral side of the ramus and bone apposition at the dorsal side.

Mandible growth-sagital plane

Condyle growth causes lengthening has no direct impact on possible implants. makes the corpus mandibulae undergo a limited rotation. Height increases mainly through bone apposition at the dentoalveolar complex, especially during the tooth eruption phase and the

growth at the condyle.

Alternatives

Consider consequences of interventions in the mixed dentition with regard to jaw development and establishment of the permanent dentition

1. Orthodontic space closure

1. Orthodontic space closure

General considerations Morphology and dimension requirements Esthetics requirements Patient age Orthodontic Concepts Space situation and Strategies Frans P.G.M. van der Linden ≻ Mid-line Root-cement > Symmetry

Indicators for orthodontic solution

Young patient
Lack of space
Proclined incisives
Large lateral
Other need for orthopedic treatment

Orthodontic process if early loss of central

- * Move lateral to midline immediately
- * Extract 1st deciduous molar to obtain mesial movement of 1st molar
- Deciduous canine extracted depending on angulation of canine
- * Complete the orthodontic treatment early in the permanent dentition

Treatment aims with orthodontic space closure

- * Symmetry with regard to midline
- * Correct axial angulation
- * Avoid retrusive dentition
- * If class II: keep distal occlusion
- * Neutral relation <>>> distal occlusion
- * Simple interventions if early start
- Change tooth forms after completed orthodontics

<u>Morphology details</u> 2 vs 5° Gingival contour

Cervical margin height

Angulation & papilla fill

Canine width narrowed & lateral adjusted

Alternatives

Consider consequences of interventions in the mixed dentition with regard to jaw development and establishment of the permanent dentition

1. Orthodontic space closure

2. Conventional prosthodontics

Fixed "esthetic" solutions – preimplant –pre-etch-bridge era

Fixed prothodontics and young patients

Complications

Large risk for accidental pulp exposure
Large risk of pulp damage due to thermic, osmotic chemical and bacterial effects
Tooth in eruption, retention and esthetic problems

Contour and gingival problems

Delay! Delay! Delay!

Etch bridges on young patients

➢ Occlusion Caries activity Preparation of teeth > Cement Complications Loosening (30-50% within 3-5 years) Children vs adults? plaque-retaining – secondary caries **>**esthetics

AND FOR THE STATE

Etch bridges on young patients

- Seems to loosen more than for adults
 - More often problems with a dry work field?
 - Longer clinical crowns?
 - Resin attachment to enamel depend on age?
- Etch bridges that become loose is often after short time – good cement technique crucial.
- Recemented etch-bridges show higher loosening rate compared to recemented repaired etchbridges – consider functional stresses
- Preparation of guideplanes, occlusal stops and proximale furrows increase retention but decrease reversibility of therapy

Alternatives

Consider consequences of interventions in the mixed dentition with regard to jaw development and establishment of the permanent dentition

- 1. Orthodontic space closure
- 2. Conventional prosthodontics
- 3. Removable flipper

Temporary Removable "Esthetic" solutions

Alternatives

Autotransplanted teeth	Implants
Induce bone	No bone induction
Induce a gingival papilla	A gingival papilla has to be created (if possible)
No requirement of bone support	Requires three-dimensional bone support
Eruption possible	Eruption not possible
Can be moved orthodontically	Cannot be moved orthodontically
No age-related requirements	Limited to adults
Very good cost efficiency	Cost efficiency debatable

Implant supported therapy
(Auto-transplantation)

Alternatives

Consider consequences of interventions in the mixed dentition with regard to jaw development and establishment of the permanent dentition

- 1. Orthodontic space closure
- 2. Conventional prosthodontics
- 3. Removable flipper
- 4. Implant supported therapy
- 5. (Auto-transplantation)

Teeth continue to erupt

Teeth continue to erupt – 5 / 9 / 12 years postsurgery

5

Op Heij, et al. 2006

0

Koch G, Bergendal T, Kvint S, Johansson UB, 1996

Publisher: Gothia Isbn: 9-1720-5044-6 THE INSTITUTE FOR POSTGRADUATE DENTAL EDUCATION JÖNKÖPING, SWEDEN

Consensus Conference on Oral Implants in Young Patients

Editors: Göran Koch, Tom Bergendal, Sven Kvint, Ulla-Britt Johansson

Consensus Conference on Oral Implants in Young Patients

What is the optimal age for placing oral implants in young patients?

- I here is no fixed chronological age for implant placement. Instead, biological age should be determined regarding growth and skeletal development which should he completed or nearly completed as assessed by different methods:
 - 1. longitudinal body height measurement
 - 2. hand-wrist radiograph

In cases of anodontia and severe oligodontia, however, oral implants may be placed before the pubertal growth spurt.

Implant therapy – delay!

5 years

Palatal position

Op Heij, et al. 2003

Implant therapy - delay!

Implant therapy – delay!

Three major reasons for not placing implants in patients before growth ends:

- 1. The implant does not follow the growth of the alveolar ridge and will remain in an infraposition or perhaps even submerged
- 2. An implant can potentially influence the normal growth of the jaw
- 3. Immature bone reacts differently from mature bone. The implant may deviate from the original positional axis

Thank you for your kind attention